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Abstract

A constructal multi-scale design approach is examined for micro-tube heat sinks and heat exchangers. Heat transfer per unit volume is increased
by considering the use of additional micro-tubes placed in the intersticial regions of a circular tube array. Three constructs are considered in the
proposed analysis. As the system complexity increases, the heat transfer rate increases, and exceeds the theoretical value for a volume of similar
size, composed of parallel plates. Approximate solutions for the diameter of the principal construct are obtained for each case using Bejan’s
intersection of asymptotes method. Exact analytical methods are applied to determine the relative increase in heat dissipation per unit volume as
compared with systems containing parallel plates.
© 2006 Elsevier Masson SAS. All rights reserved.
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1. Introduction

Micro-tube and micro-channel cooling devices are becoming
more prevalent in engineering systems. High heat flux appli-
cations require solutions which minimize the overall package
thermal resistance, or in other words, maximize heat trans-
fer per unit volume. In space constrained applications, such
as micro-chip cooling, micro-tube technology is finding wide-
spread application, since large numbers of these tubes may be
accommodated in a small space. Efficient thermal design re-
quires that the diameter of these tubes be optimal for a pre-
scribed set of flow conditions. The idea of a designed porous
media was recently put forth by Bejan [1], and is discussed
further in the recent text by Bejan et al. [2]. In this design
philosophy, thermal optimization within a fixed volume leads
to a flow architecture which is essentially a complex porous
structure, which has been designed for minimum thermal resis-
tance.

Several approaches exist for choosing this optimal duct di-
ameter. These include classical optimization techniques such as
the direct search method or the Lagrange multiplier method; or
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simpler modern techniques such as the intersection of asymp-
totes method, proposed by Bejan [3,4]. Recently, the author [5]
applied Bejan’s intersection of asymptotes method for geome-
tries widely used in compact heat exchangers, and obtained
the optimal dimensions for arrays of circular and non-circular
ducts. In the present work, a constructal multi-scale design
approach is presented which allows for maximum heat dis-
sipation in systems utilizing circular micro-tubes. Multi-scale
design utilizes multiple length scales to assist in maximiz-
ing heat transfer density or effectively minimizing the global
thermal resistance of the system of interest. Recently, Bejan
and Fautrelle [6] demonstrated the methodology for a system
composed of parallel plates. By means of inserting additional
plates in the under utilized regions of the flow, the heat trans-
fer density of the structure was increased. Bello-Ochende and
Bejan [7] further studied this system using numerical meth-
ods.

The circular tube is an optimal construction in nature, and
hence is also most frequently used in engineering design. How-
ever, due to the fact that circular tubes do not allow for efficient
packing as compared with parallel plates, square ducts, or tri-
angular ducts, maximum heat dissipation rates tend to be lower
in systems composed of tubes as shown in Table 1. These solu-
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Nomenclature

A flow area . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m2

Be Bejan number, ≡ �pL2/μα

C1 constant
Cp specific heat . . . . . . . . . . . . . . . . . . . . . . . J kg−1 K−1

d diameter of circular duct . . . . . . . . . . . . . . . . . . . . m
e effectiveness
f friction factor, ≡ τ/( 1

2ρU2)

f ReL friction factor Reynolds number, ≡ 2τL/μU

k thermal conductivity . . . . . . . . . . . . . . . W m−1 K−1

h heat transfer coefficient . . . . . . . . . . . . W m−2 K−1

H height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
L duct length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
ṁ mass flow rate . . . . . . . . . . . . . . . . . . . . . . . . . . kg s−1

n constructal level
N number of ducts
NTU number of transfer units
P perimeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N m−2

Pr Prandtl number, ≡ ν/α

Q heat transfer rate . . . . . . . . . . . . . . . . . . . . . . . . . . . W
Q heat transfer per unit volume, ≡ Q/HWL

Q� dimensionless Q, ≡ QL2/k(T s − Ti)

ReL Reynolds number, ≡ UL/ν

T s wall or surface temperature . . . . . . . . . . . . . . . . . . K
Ti fluid inlet temperature . . . . . . . . . . . . . . . . . . . . . . . K
U average velocity . . . . . . . . . . . . . . . . . . . . . . . . m s−1

U∞ free stream velocity . . . . . . . . . . . . . . . . . . . . . m s−1

W width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
z+ dimensionless hydrodynamic duct length,

≡ L/LReL
z∗ dimensionless thermal duct length, ≡ L/LReLPr

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . m2 s−1

δ1 dimensionless optimal diameter, ≡ d1

L
Be1/4

μ dynamic viscosity . . . . . . . . . . . . . . . . . . . . . N s m−2

ν kinematic viscosity . . . . . . . . . . . . . . . . . . . . . m2 s−1

ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . kg m−3

τ wall shear stress . . . . . . . . . . . . . . . . . . . . . . . . N m−2

Subscripts

a approximate
app apparent
e exact
f fluid
i construct
l large
L based upon the arbitrary length L
opt optimum
s small
w wall
Table 1
Exact solutions for parallel plates and circular tubes versus Prandtl number

Pr (bopt/L)Be1/4 Q�/Be1/2

Parallel plates [8]

0.72 3.033 0.479
6 3.077 0.522

20 3.078 0.527
100 3.055 0.526

1000 3.025 0.523

Circular tubes [9]

0.1 5.261 0.2348
1 4.971 0.3369

10 5.234 0.3783
100 5.284 0.3843

tions are from the work of Bejan and Sciubba [8] and Yilmaz
et al. [9] who examined finite volumes of parallel plates and
circular tubes. This issue can be alleviated through the use of
multi-scale design. In a fixed volume, a finite number of equal
diameter tubes may be aligned in a square packing arrange-
ment, as shown in Fig. 1, or some other known distribution.
The principle behind the constructal multi-scale approach, is to
pack additional tubes of smaller diameter in the intersticial re-
gions which represent under utilized space for cooling ducts, as
shown in Fig. 2. Ideally, in such a system, there would be ma-
terial around each tube as shown, but in the foregoing analysis
Fig. 1. Compact tube heat sink/heat exchanger [5].

it is assumed that the largest number of tubes occurs when all
tubes are in contact. This also leads to simple recursive relation-
ships for the tube layouts under consideration. Three constructs
will be considered. These are the principal construct as found
in Muzychka [5], which is based on the simple square pack-
ing arrangement, a secondary construct, and a tertiary construct.
With the addition of each new construct, it will be shown that
the theoretical heat transfer rate per unit volume increases. In
other words as the complexity of the structure increases, the
overall thermal resistance decreases.
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Fig. 2. Multi-scale design of micro-tube heat transfer device.

2. General theory

The basic theory for the multi-scale structure will now be
developed. The structure will be assumed to be composed of
multiple diameter tubes of a particular arrangement. Further, the
structure will be assumed to be composed of a highly conduc-
tive material which results in nearly isothermal walls. Finally,
laminar flow is assumed to prevail through out the structure.
The basic theory will be developed for the most general case
of an array of circular tubes containing n numbers of tubes of
diameter di , for i = 1, . . . , n. Later a specific case of circular
tubes arranged on square centers with interstitial tubes will be
considered.

2.1. Small duct diameter

In the case of an array of ducts with multiple small cross-
sectional characteristic reference length scales, the enthalpy
balance for fully developed flow gives:

Qs =
n∑

i=1

ρUiNiAiCp�T (1)

where Ai is the cross-sectional area of an elemental duct, Ni is
the number of such ducts, and �T = T s − Ti is the surface to
inlet temperature difference.
The mean velocity, Ui , in any one duct assuming uni-
form flow, may be determined from the fully developed flow
Poiseuille number defined as:

f Red

2
= τwdi

μUi

= (Ai/Pi)(�p/L)di

μUi

= 8 (2)

or

Ui = �pd2
i

32μL
(3)

Combining Eqs. (1) and (3) gives the heat transfer rate in
terms of the fundamental flow quantities:

Qs = πρ�pCp�T

128μL

n∑
i=1

Nid
4
i (4)

for a collection of various sized tubes. The value of Ni for a
given array must be determined for the cross-section, HW , in
terms of a characteristic dimensions of the ducts in the array and
the layout. By means of simple recursive relationships, three
levels of flow architecture may be considered, and the overall
energy balance written in terms of the principal tube diameter.

2.2. Large duct diameter

In the case of an array of ducts with large cross-sectional
characteristic length scales, the heat transfer rate may be ad-
equately approximated as boundary layer flow in this limit,
Muzychka and Yovanovich [10]. The heat transfer rate is de-
termined from:

Ql =
n∑

i=1

hPiL�T (5)

where h may be defined from the expression for laminar bound-
ary layer flow over a flat plate:

hL

kf

= 0.664

(
U∞L

ν

)1/2

Pr1/3 (6)

The free stream velocity U∞, is obtained from a force bal-
ance on the array:

τw

n∑
i=1

PiLNi = �p

n∑
i=1

NiAi (7)

where the mean wall shear stress is obtained from the boundary
layer solution:

τw

1
2ρU2∞

= 1.328

(
U∞L

ν

)−1/2

(8)

Combining Eqs. (7) and (8) yields the following result for
U∞:

U∞ = 1.314

(
�p

∑n
i=1 Nid

2
i

4ρ
√

ν
√

L
∑n

i=1 Nidi

)2/3

(9)

Finally, combining Eqs. (5), (6) and (9) yields the following
result for the heat transfer rate:
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Ql = 1.506kf �T

(
Pr�pL

ρν2

)1/3 n∑
i=1

(∑n
i=1 Nid

2
i∑n

i=1 Nidi

)1/3

Nidi

(10)

Once again, we see that the heat transfer rate is directly pro-
portional to the number of ducts in the array structure.

2.3. Optimal duct size

The optimal duct or channel size may be found by means of
the method of intersecting asymptotes [3,4]. The exact shape
of the heat transfer rate curve may be found using more exact
methods such as expressions found in Shah and Sekulic [11]
or Muzychka and Yovanovich [10]. However, the intersection
point of the two asymptotic results is relatively close to the ex-
act point as shown in Fig. 3. In this way, an approximate value
for the duct dimensions may be found. Intersecting Eqs. (4) and
(10) gives:

61.35

(
α2μ2L4

�p2

)1/3

≈
∑n

i=1 Nid
4
i∑n

i=1(
∑n

i=1 Nid
2
i /

∑n
i=1 Nidi)1/3Nidi

(11)

after collecting and simplifying. We may write the above equa-
tion in terms of the Bejan number, as:

61.35
L8/3

Be2/3
≈

∑n
i=1 Nid

4
i∑n

i=1(
∑n

i=1 Nid
2
i /

∑n
i=1 Nidi)1/3Nidi

(12)

where Be = �pL2/μα. The left-hand side is determined by
the system constraints of flow length, pressure drop, and work-
ing fluid, while the right-hand side determines the optimal tube
diameters. Once a system architecture is proposed, that is the
number of constructs, and the relationship between constructs
is known, Eq. (12) may be solved for the principal duct diame-
ter, from which all others follow.

2.4. Maximum heat transfer density

The maximum heat transfer rate for a fixed volume can be
obtained from Eq. (4) or (10) using the optimal result deter-
mined by Eq. (12). The number of ducts Ni , which appears in

Fig. 3. Method of intersecting asymptotes.
the final result may then be cast in terms of the cooling vol-
ume cross-section HW and the principal duct diameter. In this
way, the maximum heat transfer per unit volume may be deter-
mined. Subsequent results may then be presented in terms of
the following dimensionless heat transfer per unit volume:

Q� � QL2

k(T s − Ti)
= C1Be1/2 (13)

where Q = Q/(HWL) is the heat transfer per unit volume, and
C1 is a numerical constant determined from the system geome-
try.

3. Constructal approach

The constructal approach [3,4] is based on the principle of
maximization of flow access. Further, through the use of the
intersection of asymptotes method, simple solutions for the op-
timal tube diameters can be easily derived for various config-
urations. These simple solutions may then be used to develop
approximate solutions for the maximum heat transfer density,
or they may be used to determine the maximum heat transfer
density with greater accuracy by first computing the neces-
sary transport coefficients and then using the appropriate heat
exchanger model. This hybrid approach has the advantage of
yielding more accurate results with only a marginal increase in
effort.

In the present analysis three constructs are considered. These
are illustrated in Fig. 4, which illustrates the basic cell for each
case. It can be shown that the second and third constructs may
be related to the first or principal construct when the ducts are in
contact with each other as shown. The following relationships
are derived through simple geometric analysis:

d1 = d1 (14)

d2 = (
√

2 − 1)d1 (15)

d3 =
(

3 − 2
√

2

3 − √
2

)
d1 (16)

where d1 is the diameter of the principal or first construct.
Higher order constructs (n � 4) are more difficult to derive and
are also of lesser value due to their diminished size.

As we strive for maximum global performance, we will also
consider any gains made through the use of multi-scale design
by comparing with the special case of a volume containing only

Fig. 4. A comparison of the relative size of the basic cell for each constructal
design.
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parallel plates. This fundamental solution was obtained by Be-
jan and Sciubba [8] and provides the following approximate
results:
bopt

L
≈ 2.726Be−1/4 (17)

and

Q� � 0.6192Be1/2 (18)

It was shown by the author [5] that this is the best overall
geometry when considering exact results provided in Table 1,
under the constraints of fixed volume and pressure drop.

3.1. First construct (n = 1)

The first construct is shown in Fig. 4(a). The basic duct
arrangement is a simple square packing arrangement with N1 ∼
HW/d2

1 . The solution for the first construct was obtained in a
recent paper by the author [5]:

d1,opt

L
≈ 4.683Be−1/4 (19)

The maximum heat transfer rate for this arrangement was
found to be of the order:

Q� � 0.5382Be1/2 (20)

3.2. Second construct (n = 2)

If additional tubes representing the second construct are
added to the intersticial regions, as shown in Fig. 4(b), a general
improvement is achieved, but the arrangement is not optimal, as
the secondary tube diameter is sub-optimal. Eq. (12) allows for
the coupling of the first and second contructs, which leads to
an optimal solution for the pairing of the first and second con-
structs.

The solution for the second construct when N1 ∼ HW/d2
1

and N2 ∼ N1 for the basic cell, produces the following results:

d1,opt

L
≈ 5.152Be−1/4 (21)

The diameter of the principal construct has now increased
to allow for increased performance through the addition of the
second construct. Intuitively, one should expect this behavior.
The maximum heat transfer rate density for the new arrange-
ment was found to be of the order:

Q� � 0.6701Be1/2 (22)

The solution for the coupling of the first and second con-
structs provides for a nearly 25% increase in heat transfer rate
density. Further, this approximate theoretical result exceeds
the approximate theoretical result for parallel plate channels,
Eq. (18).

3.3. Third construct (n = 3)

Repeating the procedure one more time with N1 ∼ HW/d2
1 ,

N2 ∼ N1, and N3 = 4N1, for the basic cell containing the addi-
tion of the third construct, as shown in Fig. 4(c), leads to:

d1,opt ≈ 5.535Be−1/4 (23)

L

Once again, the principal construct (and the second) has in-
creased in size to allow for better global performance of the
structure. The maximum heat transfer rate density is now found
to be of the order:

Q� � 0.7740Be1/2 (24)

The solution for the coupling of the third construct to the first
and second constructs, yields a further increase in heat transfer
density of approximately 15%. Overall, the heat transfer rate
density increases by 44% over the case when only one construct
is used. The heat transfer density using the second and third
constructs, now far exceeds the theoretical value for systems
containing parallel plates.

The relative changes in size of the basic cell for each of the
tube layouts is shown in Fig. 4, which compares the three con-
structal designs. The basic cell containing the second construct
is approximately 10% larger than the first construct, while the
basic cell containing the second and third constructs is approx-
imately 18% larger than the first construct. It is this freedom
to morph, as constructs are added, that allow for the system’s
global performance to increase.

4. Exact analysis

The heat transfer rate for the three constructal designs, may
be computed using an exact analytical approach for isother-
mal tubes. The heat transfer rate will be computed using an
effectiveness-number of transfer units, e-NTU model for par-
allel flow through an isothermal system [11]:

Q = ṁCp(T s − Ti)

[
1 − exp

(
−hPL

ṁCp

)]
(25)

The mass flow rate for a prescribed pressure drop is com-
puted using the model of Muzychka and Yovanovich [10] for
the apparent friction factor for hydrodynamically developing
flows:

fappRe√
A

=
[
(f Re√

A
)2 +

(
3.44√

z+

)2]1/2

(26)

where

z+ = L√
ARe√

A

= μL

ṁ

and

f Re√
A

= 8
√

π

It is clear when L is fixed, the value of z+ may also be inter-
preted as a form of dimensionless mass flow rate.

The heat transfer coefficient is computed using the general
model of Muzychka and Yovanovich [10] for the Nusselt num-
ber for simultaneously developing flows. It is given below in a
form which is valid for an isothermal tube:

Nu√
A
(z∗) =

[(
2f (Pr)√

z∗

)m

+
({

0.614

(
f Re√

A

z∗

)1/3}5

+ 3.015
)m/5]1/m

(27)
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where

z∗ = L√
ARe√

A
P r

= μL

ṁPr

and

f (Pr) = 0.564

[1 + (1.664Pr1/6)9/2]2/9
(28)

and

m = 2.27 + 1.65Pr1/3 (29)

The use of Eqs. (25)–(27) requires the definition of a para-
metric variable. The scaling law derived from the approximate
intersection of asymptotes method provides such a variable [8]:

δ1 = d1

L
Be1/4 (30)

Eq. (26) may then be written as:

δ4
1 = g1(z

+,Pr) (31)

since,

fappRe√
A

= 2A

P

�p

L

√
A

μU
(32)

while Eq. (27), may be written as:

Nu√
A

= g2(z
+,Pr) (33)

Finally, Eq. (25) may be written in dimensionless form as:

Q�

Be1/2
= g3

(
δ1, z

+,Nu√
A
,Pr

)
(34)

The parametric solution for a given value of Prandtl num-
ber, requires that z+ be specified. The value of δ1 may then
be solved for using Eq. (26), next Nu√

A
is found, and finally,

Q�/Be1/2 is calculated using the list [Pr, z+, δ1,Nu√
A
]. The

process is then repeated for a new value of z+ and so forth.
The resulting parametric analysis yields a plot of Q�/Be1/2

versus δ1, which then gives the optimal value of δ1. In the
case of a multi-scale design, Eqs. (25)–(27) are also writ-
ten for each tube scale giving δi where i = 1, . . . ,3, and
the total heat transfer rate density taken as the sum of the
three contributions. The additional equations may then be writ-
ten in terms of δ1, the principal construct, using Eqs. (14)–
(16). The solution procedure now requires that the following
list of variables be stated and/or solved for, in the follow-
ing order: [Pr, z+

1 , δ1, z
+
2 ,Nu1,Nu2,Q

�/Be1/2] for n = 2 or
[Pr, z+

1 , δ1, z
+
2 , z+

3 ,Nu1,Nu2,Nu3,Q
�/Be1/2] for n = 3.
Fig. 5. Exact results for Pr = 0.1.

Fig. 6. Exact results for Pr = 1.

The results of the analysis are summarized in Table 2 and
in Figs. 5–9. For n = 1, the case of a single construct, the re-
sults are in excellent agreement with those in Table 1 obtained
by Yilmaz et al. [9]. The small differences are due to the use of
different models for fapp Re and Nu. The gains in dimension-
less heat transfer rate density are significantly smaller than the
approximate relationships indicated. Further, the exact analy-
sis reveals that there is virtually no advantage to using the third
construct. The theoretical gain of 15% is masked as a result
of the approximate nature of the solution. Typically, the gains
made in using the second construct range from 6–10%.

Table 2 also summarizes the results obtained using Eqs. (25)–
(27) when the approximate solutions for d1,opt are used. Clearly,
Table 2
Exact and approximate results for each constructal level

Pr (n = 1) (n = 2) (n = 3) Parallel plates

Q�
e/Be1/2

δ1 Q�
e/Be1/2 Q�

a/Be1/2 δ1 Q�
e/Be1/2 Q�

a/Be1/2 δ1 Q�
e/Be1/2 Q�

a/Be1/2

0.1 5.718 0.2339 0.2304 5.937 0.2543 0.2511 5.938 0.2548 0.2539 0.3541
1 4.912 0.3223 0.3209 5.301 0.3412 0.3410 5.301 0.3416 0.3414 0.4905

10 5.165 0.3588 0.3544 5.747 0.3802 0.3779 5.747 0.3806 0.3805 0.5230
100 5.351 0.3669 0.3601 6.085 0.3906 0.3853 6.085 0.3911 0.3894 0.5250

1000 5.344 0.3679 0.3607 6.072 0.3921 0.3862 6.072 0.3926 0.3905 0.5223
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Fig. 7. Exact results for Pr = 10.

Fig. 8. Exact results for Pr = 100.

Fig. 9. Exact results for Pr = 1000.

near exact solutions are obtained using the approximate solu-
tion for the geometry with fundamental heat transfer theory.

Finally, it should be noted that although gains were made us-
ing the idea of multiple scales, the results still do not equal or
exceed those of the parallel plate channel for the same Prandtl
number. The parallel plate structure still provides 33–43%
greater heat transfer rate density, due to the smaller plate spac-
ing and more efficient packing of surface area. If surface area
is also constrained, then the problem becomes one of optimal
distribution of flow resistances. In this case both systems, that
is, one with channels and the other with tubes, will have ap-
proximately the same overall heat transfer density, with one
marginally performing better than the other.

We conclude with an illustrative example which demon-
strates a number of fundamental issues. Consider the de-
sign of a water cooled chip cooler of nominal dimensions
W = 50.8 mm, H = 25.4 mm, L = 50.8 mm, �p = 1000 Pa,
and T s − Ti = 25 K. The properties may be taken as: Cp =
4176 J kg−1 K−1, ρ = 997 kg m−3, kf = 0.613 W m−1 K−1,
α = 0.1471e−6 m2 s−1, ν = 0.8576e−6 m2 s−1, and Pr =
5.83. Using Eqs. (19) and (25)–(27), we may easily show that
for a system using only first constructs, d1,opt = 0.629 mm
and a heat transfer rate of Q = 19 753 W result. Next, if we
now assume that the principal diameter remains the same but
we choose to fill the intersticial regions with a second but
sub-optimal construct, the heat transfer rate becomes Q =
20 635 W. However, if we now use the new principal diame-
ter for the case where two constructs are coupled, Eq. (21),
one now obtains d1,opt = 0.692 mm and Q = 21 116 W. The
difference between the first and second constructs is approxi-
mately 7%. It is now clear that the enlargement of the principal
construct does allow for maximal heat transfer density when
a second construct is used. It may also be shown that further
changes in d1,opt lead to sub-optimal performance. Finally, it
should be pointed out that in this case, the thermal entrance
length for the principal construct is L/d RedPr = 0.049, and
L/d RedPr = 1.55 for the second construct. The latter gives
rise to local Nusselt numbers which are nearly at fully devel-
oped flow values. Thus, the third construct which contributes
very little, represents thermally fully developed flow, which
should be avoided in practical design applications. The prin-
cipal construct always yields a system design which is of the
same order as the thermal entrance length.

5. Summary and conclusions

A constructal multi-scale design of a micro-tube heat sink/
heat exchanger was considered. It was shown that through the
use of intersticial tubes, maximum heat transfer rates for arrays
of circular tubes were increased, but did not surpass rates for ar-
rays of parallel plates. Approximate results were obtained using
the intersection of asymptotes method. These approximate so-
lutions were compared with exact results using semi-analytical
relationships for fluid friction and heat transfer in tubes. In gen-
eral, through the use of multi-scale design techniques, greater
performance of heat sink/heat exchanger core structures can be
obtained versus conventional design approaches. The method is
robust and may be applied to systems with different tube layouts
from those considered, assuming that the distribution of tubes
(or scales) is known. Finally, it was demonstrated that using
the approximate solution for internal geometry, when combined
with fundamental heat transfer theory for heat exchangers, pro-
vided excellent results for the heat transfer rate density.
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